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[1] An aggregate drought index (ADI) has been developed, and evaluated within three
diverse climate divisions in California. The ADI comprehensively considers all physical
forms of drought (meteorological, hydrological, and agricultural) through selection of
variables that are related to each drought type. Water stored in large surface water
reservoirs was also included. Hydroclimatic monthly data for each climate division
underwent correlation-based principal component analysis (PCA), and the first principal
component was deseasonalized to arrive at a single ADI value for each month. ADI
time series were compared against the Palmer Drought Severity Index (PDSI) to describe
two important droughts in California, the 1976–1977 and 1987–1992 events, from a
hydroclimatological perspective. The ADI methodology provides a clear, objective
approach for describing the intensity of drought and can be readily adapted to characterize
drought on an operational basis. INDEX TERMS: 1812 Hydrology: Drought; 1894 Hydrology:

Instruments and techniques; 1833 Hydrology: Hydroclimatology; KEYWORDS: drought, index, PDSI, principal

components
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1. Introduction

[2] Droughts are the world’s costliest natural disasters,
causing an average $6–8 billion in global damages annually
and collectively affecting more people than any other form
of natural disaster [Wilhite, 2000]. Of the 46 U.S. weather-
related disasters between 1980 and 1999 causing damages
in excess of $1 billion, eight of the events were droughts.
These included the most costly national disaster, the
1988 drought, which alone was assessed for $40 billion
of losses [Ross and Lott, 2000]. However, despite the
ubiquity and often obvious recognition of drought, precise
physical quantification of drought intensity is a complex
geophysical endeavor.
[3] Traditionally, drought has been classified according to

the hydrologic compartment in which there is a water
deficiency. Meteorological drought results from a shortage
of precipitation, while hydrological drought describes a
deficiency in the volume of water supply, which includes
streamflow, reservoir storage, and/or groundwater depths
[Wilhite, 2000]. Agricultural drought relates to a shortage of
available water for plant growth and is assessed as insuffi-
cient soil moisture to replace evapotranspirative losses
[World Meteorological Organization (WMO), 1975]. For
an extensive listing of the specialized drought indices
available for the three physical forms of drought, refer to
WMO [1975] and Heim [2000].

[4] An alternative to specialized drought indices is to use
a broad metric to assess the overall availability of water.
This was the motivation behind the Palmer Drought Sever-
ity Index (PDSI), which has historically been the most
widely used index of drought in the United States [Palmer,
1965]. However, the PDSI is recognized to have limitations
owing to its complex, empirical derivation and the fact that
its underlying computation is based on the climates of
Midwestern states. For a thorough discussion of these
weaknesses, refer to Guttman et al. [1992], Alley [1984],
and Keyantash and Dracup [2002].
[5] The SurfaceWater Supply Index (SWSI), developed by

Shafer and Dezman [1982], is a drought index that assesses
the intensity of hydrological drought by considering snow-
pack and surface water levels. It was developed for regions
such as California and the mountainous West, where spring
snowmelt contributes significantly to surface water reserves.
Computation of the SWSI requires monthly measurements
for snowpack, precipitation, streamflow, and reservoir stor-
age. The hydrological observations are input to a basin-
calibrated algorithm that considers the percent contribution
of each hydrological component compared with the typical
water conditions in the basin [Garen, 1992]. However, the
SWSI does not directly consider other elements of the hydro-
logical cycle, such as evaporation and soil moisture content.
[6] Introduced here is the Aggregate Drought Index

(ADI), a multivariate drought index that considers the bulk
quantity of water across the meteorological, hydrological,
and agricultural regimes of drought. The domain of the ADI
is a region of climatic uniformity, such as a National
Climatic Data Center (NCDC) climate division, which has
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its water-related resources aggregately assessed through
principal component analysis (PCA).

2. ADI Constituents

[7] The ADI input variables represent volumes of water
residing or moving within the climate division. The six
parameters adopted for the ADI include precipitation (P),
evapotranspiration (E), streamflow (Q), reservoir storage
(V ), soil moisture content (W), and snow water content (s),
as shown in Figure 1. These variables may be used
selectively, depending on the characteristics for the region
of interest. For instance, if a region does not possess winter
snowpack, s should be omitted. Since the approach treats
months separately, it is possible to use a different set of
variables for each month.
[8] Groundwater can offset surface water shortages

during a drought; aquifers may be managed analogously
to surface reservoirs for the storage and withdrawal of
water [e.g., Draper et al., 2003]. However, groundwater
was not included in the suite of ADI variables for three
reasons: (1) Historic groundwater heights prior to human
disturbances are typically unknown; (2) groundwater flow
between distinct, heterogeneous aquifers across sizeable
climate divisions is difficult to assess; and (3) groundwater
response to drought may be asynchronous with other ADI
variables; groundwater recharge/depletion commonly
occurs at a timescale of weeks to years, which extends
beyond the ADI time step of 1 month.
[9] The hydrologic cycle perspective of the ADI also

excludes variables such as temperature and teleconnection
indices from the analysis. The rationale is that if these

quantities are anticipated to herald drought, and drought
represents a shortage of water, then the effects should
be observed more directly in water-related variables. The
adopted approach thus attempts to preserve a close
connection between drought and the basic elements of the
hydrologic cycle.

3. Data Sources

[10] Hydrologic variables used in the computation of
the ADI were preferentially selected to represent measure-
ments as opposed to modeled results, but this was not
possible in the case of soil moisture. Soil moisture measure-
ments are not available on a widespread, national scale.
However, modeled soil moisture is available from the
Climate Prediction Center (CPC) on a climate divisional
basis (see http://www.cpc.ncep.noaa.gov/soilmst). Similarly,
monthly divisionally averaged precipitation was available
from the National Climatic Data Center (NCDC) in their
TD-9640 data set [NCDC, 2000a].
[11] Data for E, Q, V, and s exist for discrete points, so

multiple observational stations were used to arrive at a
single total for each climate division that was studied. The
extent of available data differed between climate divisions;
the data sources used to construct a regional value for each
division are enumerated in Table 1. Geographical locations
for the 192 observational stations employed are detailed by
Keyantash [2001].
[12] Stream discharges and reservoir storages were

(separately) summed to produce divisional totals. Snow
water content and pan evaporation were spatially averaged
using the simple Thiessen polygon technique. The total
polygonal area for E was the full climate division, while
the domain of s was the approximate areal extent of
divisional snow cover as of 1 April for years 1997 through
2001, using imagery produced by the National Operational
Hydrologic Remote Sensing Center (available at http://
www.nohrsc.nws.gov/snowsurvey.html).
[13] April 1 is the nominal date when alpine snow is

considered to be at its greatest accumulation in California
[Department of Water Resources (DWR), 2003].

4. Examination Periods

[14] The objective of the research was to compute a
chronological ADI time series from the earliest year in
which the full suite of constituent variables were available
through water year (WY) 2000. The examination period
used for each climate division is listed in Table 2. The
periods should be considered reference intervals during

Figure 1. Surface water balance as described by the
aggregate drought index (ADI). Precipitation P and snow
water content s contribute to streamflow Q, some of which
is captured as reservoir storage V. Evapotranspiration E
stems from surficial evaporation and vegetative transpira-
tion, both of which diminish the surface soil water content
W. See color version of this figure at back of this issue.

Table 1. Number of Data Stations Used to Construct ADI

Discrete Variable

Division

SourcesNC CV SC

E 2 5 1 NCDC [2001a, 2001b]
Q 15 13 9 CDECa and USGSb

V 11 34 28 CDEC
s 17 67 0 CDEC

aCalifornia Data Exchange Center (http://cdec.water.ca.gov).
bU.S. Geological Survey National Water Information System (http://

waterdata.usgs.gov/nwis).
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which the climatology was established for each hydrologic
variable, as well as the ADI itself.

5. Test Regions

[15] The three trial regions selected for application of the
ADI methodology lie within California. They are the climate
divisions identified as the North Coast Drainage (NC), the
San Joaquin Drainage (CV, as the San Joaquin River drains
the southern portion of California’s Central Valley), and the
South Coast Drainage (SC). These three divisions appear in
Figure 2 as zones 1, 5, and 6, respectively. The regions are
distinguished by the following properties:
[16] 1. The NC (zone 1) is characterized by generally wet

conditions and rugged mountainous terrain. It is the least
urbanized region and has the highest annual rainfall of any
region studied.
[17] 2. The CV (zone 5) contains elevational differences

from the alpine crests of the Sierra Nevada to the lowlands
of the Great Central Valley, where a warm growing season,
fertile soils, and irrigation combine to form the most
productive agricultural land in the United States. This
region represents the challenges of drought to the farming
community.
[18] 3. The SC (zone 6) represents the coastal and canyon

landscape of urban Southern California, where precipitation
is modest but a large population (16 million people)
depends upon the natural and imported water supplies. It
is the most urbanized environment in the state.
[19] Given the different climates in each of these

regions, application of the ADI to these diverse conditions
demonstrates its potential applicability to other regions
nationwide.

6. Mathematical Formulation of ADI

[20] Principal component analysis has been used exten-
sively in the atmospheric and hydrologic sciences to
describe dominant patterns appearing in observational data
[e.g., Barnston and Livezey, 1987; Hidalgo et al., 2000;
Lins, 1997]. In this research, PCA was adopted as the
numerical approach to distill the essential hydrologic
information from the input data set, which leads to the
construction of the ADI. Specifically, we used P-mode PCA
[Cattell, 1952], where the analysis describes temporal
fluctuations of input variables at a fixed location (climate
division). Computation of the principal components
requires constructing a square (p � p, where p is the
number of variables), symmetric, correlation matrix R to
describe the correlations between the original data. Note that
correlations were only computed among data representing
the same month. Therefore there were twelve separate
R per division to describe the cross correlations between
variables. These correlation matrices underwent PCA; for
discussion of the routine mathematical steps, refer to Haan
[1977], Wilks [1995], or Preisendorfer [1988].
[21] Principal components are a reexpression of the

original p-variable data set in terms of uncorrelated
components zj (1 < j � p). Eigenvectors derived through
PCA are unit vectors (i.e., magnitude of 1) that establish the
relationship between the PCs and the original data:

Z ¼ XE; ð1Þ

where Z is the n � p matrix of principal components, X is
the n � p matrix of standardized observational data, and E
is the p � p matrix of eigenvectors.
[22] The ADI is the first PC (PC1), normalized by its

standard deviation:

ADIi;k ¼
zi;1;k

s
; ð2Þ

where ADIi,k is the ADI value for month k in year i, zi,1,k is
the first principal component during year i, for month k, and
s is the sample standard deviation of zi,1,k over all years i.
[23] The ADI utilizes only the first PC because it explains

the largest fraction of the variance described by the full
p-member, standardized data set. Considering all months,
PC1 described an average of 58%, 63%, and 59% of the
data set variance for the NC, CV, and SC climate
divisions, respectively. Since PCs are orthogonal vectors,
it is not mathematically proper to combine them into a
single expression. Therefore only the dominant mode
was adopted to describe the bulk of the water anomalies
in the observational data.
[24] The first PC is deseasonalized to enable each

month’s ADI to represent a normalized expression of
variability. Without standardization, months that routinely
possess a higher degree of hydrologic variability cause a
chronological plot of ADI values to predictably jump. It can
be shown (Appendix A) that each of the 12 ADI time series
has a mean of zero but possesses nonunit standard deviation
(averaging 1.8 and ranging between 1.5 and 2.1 across
the 36 month-division combinations examined). Monthly
standard deviations for the three divisions examined are
shown in Figure 3.
[25] The final step in the construction of the ADI is to

reorder the terms from the 12 ADI annual time series into a
single chronology of 12n terms. The steps involved in the
calculation of the ADI are summarized in Figure 4.
[26] Computation of the ADI can be readily accom-

plished using statistical/mathematical software and a per-
sonal computer. For this research the ADI was calculated
using code written for MATLAB and executed on a Pentium
III desktop computer. The computational time for the ADI
time series for the three climate divisions was less than 1 s.
[27] For compactness, the remainder of this paper

describes the ADI using vector-matrix notation instead of
specifying multiple subscripts (as in equation (2)). In doing
so, subscript i of equation (2) vanishes, as it is implicitly
represented by the element number of the vector. Sub-
scripts 1 and k are also absent; only the first PC is used
in the ADI, and it should be understood that any computa-
tional expression applies consistently but separately for each
month. (Only upon final computation of all 12 monthly ADI
series are they combined into a single chronological time
series.) Incorporating these modifications into equation (2),
the ADI may be compactly expressed as

a ¼ z1

s
; ð3Þ

where a is the n � member ADI time series, z1 is the first
principal component of the hydrological data, and s is the
sample standard deviation of z1.
[28] Alternatively, Appendix B demonstrates how a can

be fundamentally expressed as a scalar multiple of a unit
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vector ẑ1:

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ẑ1:

7. Example Calculation

[29] Consider the computation of the ADI time series for
the month of April in the South Coast division. The 25 years
of data for P, E, Q, V, andW are arranged columnarly into an
25 � 5 matrix of observations O. A strength of the
correlation-based PCA approach used for the ADI is that
it is unimpacted by the measurement units of the input data,
so the monthly data for P, E, Q, V, and W in O are reported
in their original units of inches, hundredths of inches,
average cubic feet per second, million acre-feet, and milli-
meters, respectively:

O ¼

1:34 473 61 1:15 216

0:07 672 36 0:90 176

2:02 464 790 1:74 545

0:03 630 567 1:73 397

0:91 602 584 1:87 476

0:61 549 135 1:59 246

1:57 569 426 1:63 299

3:6 510 782 1:86 541

0:61 723 75 1:57 187

0:18 683 103 1:44 203

0:71 583 161 1:63 316

0:28 725 84 1:49 178

2:96 598 90 1:48 254

0:12 788 34 1:35 166

0:75 646 40 1:32 148

0:08 624 273 1:33 308

0:26 669 258 1:49 348

0:00 652 540 1:87 454

1:07 564 119 1:60 257

1:09 560 468 1:83 459

0:65 723 125 1:66 247

0:11 738 83 1:53 207

2:1 497 831 1:78 502

2:32 552 132 1:60 230

1:74 533 184 1:51 231

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

[30] The data in O next have their column means sub-
tracted, and each element is divided by the column standard
deviation. This expresses the original observations as a
series of standardized anomalies, and the new series is
referred to as X. Correlations between the standardized
anomalies are expressed in the symmetric, 5 � 5 correlation
matrix R:

R ¼ 1

24
XTX ¼

1 �0:68 0:40 0:32 0:38
�0:68 1 �0:53 �0:27 �0:54
0:40 �0:53 1 0:71 0:96
0:32 �0:27 0:71 1 0:74
0:38 �0:54 0:96 0:74 1

2
66664

3
77775

[31] Principal component analysis is performed on R,
and eigenvalues for the April SC time series are deter-
mined to be 3.257, 1.067, 0.425, 0.210, and 0.041. We
utilize only the first eigenvalue, which single-handedly
explains 65 percent (3.257 � 5) of the data set variance.
The eigenvector e1 associated with the first April eigen-
value is

e1 ¼ 0:36 � 0:40 0:51 0:43 0:51½ 
T:

[32] The first PCs are computed using equation (1), where
E is simply e1. The deseasonalized ADI series is constructed

Table 2. Examination Periods for Each Climate Division

Division Water Years

NC 1970–2000
CV 1974–2000
SC 1976–2000

Figure 2. The seven climate zones of California. The
North Coast (NC), San Joaquin, and South Coast Drainages
are represented by numbers 1, 5, and 6, respectively.
Source, National Climate Data Center [2000b].
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by equation (3). Combining these equations into a single
expression, the ADI for April in the SC is

a ¼ Xe1

s
: ð4Þ

Referring to Figure 3, the April SC z1 series has s = 1.80.
Inserting numbers for all variables,

a ¼ 1

1:80
�

0:34 �1:59 �0:83 �1:77 �0:70

�0:95 0:67 �0:93 �2:84 �1:01

1:03 �1:69 1:95 0:77 1:92

�1:00 0:19 1:10 0:75 0:75

�0:10 �0:13 1:16 1:34 1:37

�0:40 �0:73 �0:55 0:12 �0:46

0:57 �0:50 0:56 0:32 �0:04

2:64 �1:17 1:92 1:32 1:89

�0:40 1:25 �0:78 0:07 �0:93

�0:84 0:79 �0:67 �0:53 �0:80

�0:30 �0:34 �0:45 0:30 0:10

�0:74 1:27 �0:74 �0:30 �1:00

1:99 �0:17 �0:72 �0:33 �0:40

�0:90 1:99 �0:94 �0:90 �1:10

�0:26 0:37 �0:91 �1:04 �1:24

�0:94 0:12 �0:02 �0:98 0:03

�0:76 0:64 �0:08 �0:29 0:35

�1:03 0:44 0:99 1:35 1:20

0:06 �0:56 �0:61 0:17 �0:37

0:08 �0:60 0:72 1:19 1:23

�0:36 1:25 �0:59 0:46 �0:45

�0:91 1:42 �0:75 �0:13 �0:77

1:11 �1:32 2:11 0:96 1:58

1:34 �0:69 �0:56 0:17 �0:58

0:75 �0:91 �0:36 �0:21 �0:57

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

�

0:36

�0:40

0:51

0:43

0:51

2
6666666666664

3
7777777777775
¼

�0:43

�1:56

1:86

0:46

1:05

�0:18

0:45

2:18

�0:83

�0:89

�0:01

�1:00

0:04

�1:42

�0:99

�0:44

�0:28

0:64

�0:10

0:99

�0:54

�0:96

1:79

0:14

0:03

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

8. Operational Computation of ADI

[33] The ADI results presented in this paper were
obtained using the entire period of record (see Table 2)
for each of the parameters. Usage of the full record to
compute the parameter means is ultimately responsible for
the ADI zero mean property detailed in Appendix A.
However, if the ADI were operationally computed on a
monthly basis, it would be necessary to assign a baseline
period from which to define reference means, reference
standard deviations, and reference eigenvectors. The base-
line means, standard deviations, and eigenvectors, 12 of
each, would be applied to all future data. Defining the new
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period as an ever-enlarging interval of time following the
baseline period, anew and Xnew would be computed

anew ¼ Xnewe1

s
ð5Þ

where

Xnew ¼ Onew �Mð ÞD ð6Þ

leading to

anew ¼ Onew �Mð ÞDe1
s

ð7Þ

where
Onew = nnew � p matrix of postreference period observa-

tional data;
M = nnew � p matrix of data means (every row is

identical), based on reference period;
D = p � p diagonal matrix with the inverse of the

sample standard deviation for each hydrologic
variable xi (i.e., sxi

�1, 1 � i � p) residing upon
each diagonal element di,i;

e1 = p � 1 first eigenvector, based on reference period;
s = sample standard deviation of z1 during reference

period.

[34] In addition to simplifying computation of the ADI
(the numerical steps to redetermine e1 would be no longer
be necessary), use of reference quantities would impor-
tantly preserve the historical values of the ADI. In certain
instances it might be desirable to reevaluate the severity of
wet and dry months by viewing anomalies with respect to
the entire historical context, but in routine operations it
would be preferable to have the ADI as a function of time
that is independent from the date of computation.

[35] There are close relationships between the baseline
period and operational formulae for the ADI. Appendix C
summarizes expressions for a and anew using various data
vectors.

9. Comparison With PDSI and Other Drought
Indices

[36] The ADI is similar to the PDSI in the fact that both
indices’ dependent variables are centered upon the physical
theme of water balance. Consequently, a comparison of the
ADI computations with the PDSI time series provided an
important check on the appropriateness of the ADI findings.
It should be stressed that a perfect corroboration was neither
anticipated or desired. As mentioned in section 1, the PDSI
suffers from certain limitations, primarily geographic biases,
inadequate treatment of snowfall, and a complex, empirical
formulation [Alley, 1984; Guttman et al., 1992; Keyantash
and Dracup, 2002]. Consequently, although the PDSI is a
widely used index, it should not be considered as the
ultimate standard.
[37] Monthly PDSI data for each climate division were

obtained from the NCDC in the TD-9640 data set [NCDC,
2000a]. Assessments between the ADI and PDSI time series
used the Spearman correlation coefficient, which is the
application of the ordinary (Pearson) correlation coefficient
performed upon data ranks instead of the data themselves
[e.g., Wilks, 1995]. Rank correlation is a robust measure that
is insensitive to the underlying data distribution and is
recognized as a competent tool for determining the best
aggregate correlation [Wilks, 1995]. Similar to an ordinary
correlation coefficient, the range of the Spearman coeffi-
cient is constrained between ±1.
[38] Rank correlations between the ADI and PDSI were

found to behave similarly across the three climate divisions.
For the NC, CV, and SC divisions the correlations were
0.78, 0.72, and 0.65, respectively. However, PDSI values

Figure 3. Prior to deseasonalization, the first principal components series from each climate division
possesses nonunit standard deviation.
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oscillate between larger extrema than the ADI. The chron-
ological comparison between the ADI and the standardized
PDSI time series for the three climate divisions is shown in
Figure 5.

[39] As an alternative to the PDSI, the National Drought
Mitigation Center and the Western Regional Climate Center
recommend the Standardized Precipitation Index (SPI) as an
improved measure of meteorological drought [Redmond,
2000]. The SWSI is also widely utilized for hydrological
drought monitoring in numerous Western states. The PDSI,
SPI, and SWSI were compared and quantitatively ranked by
Keyantash and Dracup [2002] using a set of weighted
evaluation criteria. A thorough comparison of the ADI with
the SPI and the SWSI will be the subject of a future paper.

10. Two Critical Droughts

[40] Time series of the ADI were constructed for each of
the three climate divisions to characterize the magnitudes of
various droughts. Particular foci are the droughts that
occurred in California during water years 1976–1977 and
from 1987–1992. Both of these droughts were of critical
severity, and their effects reached beyond the borders of
California to affect other parts of the nation; the 1977
drought extended over much of the western United States.
Therefore these two critical drought periods were used to
assess the fidelity of the ADI.
[41] The drought during water year 1976–1977 was a

brief but extreme period of dryness, with 1977 having the
distinction of being the driest year of record in California’s
history [DWR, 1993]. During the year, annual precipitation
was 45 percent of normal, snowpack was a meager 22 per-
cent of normal, and reservoir levels were 35 percent of mean
storage. The 1976–1977 drought is best characterized as an
extreme event that fortunately only persisted for a brief
period.
[42] The relationship between drought severity, magni-

tude, and duration is displayed in Figure 6. Using this
nomenclature, the 1987–1992 drought was a longer dura-
tion event, of lesser magnitude, than the 1976–1977 event.
However, because of its duration, the severity of the 1987–
1992 drought exceeded the 1976–1977 drought, depleting
many of California’s surface water reservoirs; total storage
within 155 California reservoirs averaged two thirds of
normal during the 6 years of drought [DWR, 1993]. Not
surprisingly, the most severe hydrological drought year was
near the end, when storage at the start of WY 1993 was
56 percent of normal. Several months later, in February
1993, the drought was declared over by the governor of
California upon the rapid refilling of many surface water
reservoirs to near-average levels. This occurred as a result of
heavy precipitation during the first portion of the 1992–
1993 winter, which elevated snowpack levels to 180 percent
of normal [DWR, 1993].
[43] The chronological ADI series for each climate divi-

sion, along with the intervals of critical drought, are
displayed in Figure 7. Wet and dry spells are punctuated
by intermittent months that exhibit anomalies of the oppo-
site sign. The starting and stopping dates are subjective;
objective determination of the initiation and termination
points for droughts is an unsolved problem in hydrologic
research. The adopted months are indicated by the vertical
lines in Figure 7 and are specified in Table 3. The computed
severities, durations, and magnitudes for the two critical
droughts are also shown in Table 3.
[44] In all divisions, the most extreme drought magnitude

Mmax and mean magnitude M were larger during the 1976–

Figure 4. Flow chart of the ADI computational process.
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1977 drought than the 1987–1992 event. This behavior
is consistent with historical hydrological records. Interest-
ingly, Figure 7 indicates that the 1987–1992 drought may
have begun as early as WY 1984 in the SC, where the
fluctuating ADI during the few years before 1987 appears
more noticeably negative than in the NC and CV divisions.
Comparison with Figure 5 during this interval shows
corroboration by the PDSI.
[45] The drought severity, indicated by the integrated area

of the ADI, for each event was qualitatively appropriate in
each division (i.e., S1987–1992 > S1976–1977 for all divisions).
The ADI also identifies periods of relative wetness; the
most striking example of this is the elevated peak centered
near Julian month 167, which represents the end of summer
1983 following the strong 1982–1983 El Niño event.
Therefore, while the motivation and emphasis of this
research is drought description, it should be noted that the
ADI is equally suited to capture wet spells.
[46] The suite of ADI values may be interpreted proba-

bilistically with empirical cumulative distribution functions
(EDFs). Selected ADI percentiles may be used as thresholds
for drought severity, which is the approach for rainfall
deciles [Keyantash and Dracup, 2002; Kinninmonth et al.,
2000; Gibbs and Maher, 1967] and the SPI [Keyantash and
Dracup, 2002; Redmond, 2000; McKee et al., 1993]. Low
percentiles are characteristic of drought.

[47] The SPI dryness thresholds used by the National
Drought Mitigation Center are Gaussian variates of �2,
�1.5, and �1 standard deviations. These correspond to the
2nd, 7th, and 16th percentiles. The range of values between
the 16th and 84th percentiles are considered near-normal.
These thresholds are shown with the ADI EDF for the CV
in Figure 8.

11. Conclusion

[48] A multivariate, aggregate drought index (ADI) has
been developed to describe drought based on local water
deficiencies within the hydrologic cycle. Surface water
storage, which is important in California to mitigate the
effects of drought, is also considered as an anthropogenic
variable by the ADI. In this way, the ADI uniquely
describes drought beyond the traditional meteorological,
hydrological, and agricultural subcategories. The broad
drought perspective of the ADI is considered a strength of
the approach; an aggregate description of drought intensity
is an alluring complement to the regular distillation of
drought into its meteorological, hydrological, and/or agri-
cultural aspects.
[49] The ADI is constructed separately for each month,

based on five to six hydrologic variables: precipitation
P, evaporation E, streamflow Q, surface reservoir storage

Figure 5. ADI and Palmer Drought Severity Index (PDSI) time series for the (a) North Coast (NC),
(b) Central Valley (CV), and (c) South Coast (SC) climate divisions.
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Figure 6. Drought severity S is the product of the average magnitude M and the drought duration
D. Reprinted by permission from Keyantash and Dracup [2002].

Figure 7. ADI time series for the (a) NC, (b) CV, and (c) SC climate divisions, beginning with water
year 1970. Months within the 1976–1977 and 1987–1992 droughts have white backgrounds bordered by
vertical dotted lines; the remaining portions of the time series are shaded gray. Where dotted lines cross
multiple plots, it indicates that the divisional start/stop points were synchronous.
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V, soil moisture W, and snow water content s (if
applicable). Principal component analysis is used to extract
dominant hydrologic signals from correlations among the
observational data. The ADI is the first principal compo-
nent, normalized by the standard deviation of the monthly
series. Twelve ADI series for three diverse California

climate divisions were chronologically ordered and com-
pared against state hydrologic records. The ADI success-
fully delineated two critical droughts in California, the
1976–1977 and 1987–1992 droughts, with severities and
magnitudes qualitatively appropriate to the recorded severi-
ties of the events. The ADI was also compared against the
PDSI and produced rank correlations ranging between 0.78
and 0.65. The distinct advantages of the ADI include its
assessment of drought from the aggregate perspective of
meteorological, hydrological, and agricultural water short-
ages, and its direct mathematical formulation, which can be
rapidly applied to new observational data in a straightfor-
ward manner.

Appendix A: Mean and Standard Deviation of
ADI

[50] The ADI is computed from standardized anomalies
of hydrologic data with means of zero and unit variances.
The ADI similarly possesses a mean of zero but generally
has a nonunit standard deviation. These properties can be
explained as follows.

A1. Mean of Zero

[51] Each column j of X is a column vector xj
of standardized anomalies for the jth hydrologic

Table 3. ADI Properties of the 1976–1977 and 1987–1992

Droughts

NC CV SC

1976–1977 Drought
Start month Nov. 1975 Nov. 1975 Oct. 1975
End month Dec. 1977 Dec. 1977 Dec. 1977
Maximum month July 1977 April 1977 Jan. 1976
D, months 26 26 27
S �27.9 �24.2 �19.7
M �1.1 �0.9 �0.7
Mmax �2.5 �2.4 �1.7

1987–1992 Drought
Start month Nov. 1986 Nov. 1986 Jan. 1984
End month Dec. 1992 Dec. 1992 Dec. 1992
Maximum month Feb. 1991 Feb. 1991 Oct. 1990
D, months 74 74 108
S �53.5 �50.9 �44.3
M �0.7 �0.7 �0.4
Mmax �1.9 �1.8 �1.5

Figure 8. ADI percentiles for the CV. The horizontal dotted lines intersecting at the 2nd, 7th, 16th, and
84th percentiles represent the thresholds for extreme, severe, and moderate drought, and near-normal
conditions, respectively. Vertical dotted lines show the corresponding ADI values in the CV.
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variable. The sum of the anomalies is zero over all n
observations:

Xn
i¼1

xij ¼ 0: ðA1Þ

[52] The computation of a PC for time i is the dot product
between a row of X and a retained eigenvector. Consider
the calculation of the first two elements for PC1 (indicated
as z1):

z11
z21

	 

¼ x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

	 

�

e11
e21
e31
e41
e51
e61

2
6666664

3
7777775

z11 ¼ x11e11 þ x12e21 þ x13e31 þ x14e41 þ x15e51 þ x16e61

z21 ¼ x21e11 þ x22e21 þ x23e31 þ x24e41 þ x25e51 þ x26e61

Sum the terms and factor out the eigenvector elements:

z11 þ z21 ¼ e11 x11 þ x21ð Þ þ e21 x12 þ x22ð Þ þ e31 x13 þ x23ð Þ
þ e41 x14 þ x24ð Þe51 x15 þ x25ð Þ þ e61 x16 þ x26ð Þ

By induction, extend the pattern to include all n elements
of z1:

Xn
i¼1

zi1 ¼
X6
j¼1

ej1
Xn
i¼1

xij

The
Pn
i¼1

xij term is given in equation (A1) as zero. Therefore

Xn
i¼1

zi1 ¼ 0 ðA2Þ

The mean of the ADI is

a ¼

Pn
i¼1

ai

n
¼

Pn
i¼1

zi1

sn
:

The numerator was given by equation (A2) as zero.
Therefore the mean of the ADI vanishes:

a ¼ 0 ðA3Þ

A2. Nonunit Standard Deviation

[53] Consider the ADI sample standard deviation sa:

sa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ai � að Þ2

n� 1

vuuut

Equation (A3) states a = 0. For sa to be unit,

Xn
i¼1

a2
i
¼ n� 1

This is possible, but unlikely, so sa is generally not 1.

Appendix B: Unit Vector Expression of the ADI

[54] The ADI was given by equation (3) as

a ¼ z1

s
: ðB1Þ

The sample standard deviation s equals

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼i

zi1 � �z1ð Þ

n� 1

2
vuuut

Equation (A2) demonstrated that the sum of all zi1 terms is
zero. Since this sum forms the numerator in the computation
of a mean for z1, it is necessary that �z1 = 0. Also note that

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

z2i1

s
¼k z k

Therefore s reduces to

s ¼ k z1 kffiffiffiffiffiffiffiffiffiffiffi
n� 1

p :

and the ADI is

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
z1

k z1 k
:

Any vector divided by its magnitude defines a unit vector in
the direction of the original vector. Calling this unit vector
ẑ1,

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ẑ1 ðB2Þ

To usefully compute the ADI through the alternate approach
of equation (B2), ẑ1 should be calculated independent of z1:

ẑ1 ¼
z1

k z1 k
¼ Xe1

k Xe1 k
¼ O�Mð ÞDe1

k O�Mð ÞDe1 k
; ðB3Þ

where
X = n � p matrix of standardized observational data;
O = n � p matrix of original observational data (may be

nonstandardized, and in multiple measurement units);
M = n � p matrix of observational data means (every row

is identical);
D = p � p diagonal matrix with the inverse of the sample

standard deviation for each hydrologic variable xi (i.e.,
sxi
�1, 1 � i � p) residing upon each diagonal element

di,i;
e1 = p � 1 first eigenvector of the observational data

anomalies.
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The need to compute M directly can be obviated by
recognizing

M ¼ 1

n
1O; ðB4Þ

where
1 = n � n matrix of ones.

[55] Inserting equation (B4) into (B3) and factoring outO,

ẑ1 ¼
I� 1

n
1

� �
ODe1

k I� 1

n
1

� �
ODe1k

¼
I� 1

n
1

� �
ODe1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I� 1

n
1

� �
ODe1

	 
T
I� 1

n
1

� �
ODe1

s ; ðB5Þ

where
I = n � n identity matrix;
1 = n � n matrix of ones;
O = n � p matrix of original observational data (may be

nonstandardized, and in multiple measurement units);
D = p � p diagonal matrix with the inverse of the sample

standard deviation for each hydrologic variable xi (i.e.,
sxi
�1, 1 � i � p) residing upon each diagonal element

di,i;
e1 = p � 1 first eigenvector of the observational data

anomalies.

Appendix C: Operational ADI in Terms of ẑ1
[56] The reference and operational versions of the ADI

may be computed using either of two unit vectors: e1
( p terms) or ẑ1 (n terms). The e1 and ẑ1 unit vector
expressions for the reference ADI are given by
equations (4) and (B2), respectively. The operational for-
mula for the ADI given in equation (5) invokes the first
eigenvector, but anew does not have an immediate ẑ1
analogy. However, such a relationship can be derived.
Begin by setting the two unit vector expressions for a
(equations (4) and (B2)) equal:

Xe1

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ẑ1

Premultiply by XT to create a square matrix, and then
premultiply by (XTX)�1 to produce an identity matrix I
on the left-hand side:

I
e1

S
¼ XTX

� ��1
XT

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ẑ1 ðC1Þ

I may be omitted without altering the expression. Use
equation (C1) to substitute for e1/s in equation (5):

anew ¼ Xnew XTX
� ��1

XT
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ẑ1 ðC2Þ

The (XTX)�1XT term can be considered a p � n matrix of
constants C. Using equation (B2),

anew ¼ XnewCa ðC3Þ

Table C1 summarizes the vector expressions for the ADI.

References
Alley, W. M. (1984), The Palmer Drought Severity Index: Limitations and
assumptions, J. Clim. Appl. Meteorol., 23, 1100–1109.

Barnston, A. G., and R. E. Livezey (1987), Classification, seasonality and
persistence of low-frequency atmospheric circulation patterns, Mon.
Weather Rev., 115, 1083–1126.

Cattell, R. B. (1952), Factor Analysis: An Introduction and Manual for the
Psychologist and Social Scientist, 462 pp., Greenport Press, Westport,
Conn.

Department of Water Resources (DWR) (1993), California’s 1987–92
drought: A summary of six years of drought, report, 38 pp., Calif.
Dep. of Water Resour., Sacramento.

Department of Water Resources (DWR) (2003), Water conditions in Cali-
fornia, Bull. 120(1), 16 pp., Calif. Dep. of Water Resour., Sacramento.

Dracup, J. A., K. S. Lee, and E. G. Paulson Jr. (1980), On the definition of
droughts, Water Resour. Res., 16, 297–302.

Draper, A. J., M. W. Jenkins, K. W. Kirby, J. R. Lund, and R. E. Howitt
(2003), Economic-engineering optimization for California water manage-
ment, J. Water Resour. Plann. Manage., 129(3), 155–164.

Garen, D. C. (1992), Revised surface-water supply index for the western
United States, J. Water Resour. Plann. Manage., 119, 437–454.

Gibbs, W. J., and J. V. Maher (1967), Rainfall deciles as drought indicators,
Bull. 48, 37 pp., Aust. Bur. of Meteorol., Melbourne, Aust.

Guttman, N. B., J. R. Wallis, and J. R. M. Hosking (1992), Spatial compar-
ability of the Palmer Drought Severity Index, Water Resour. Bull., 28,
1111–1119.

Haan, C. T. (1977), Statistical Methods in Hydrology, 378 pp., Iowa State
Univ. Press, Ames.

Heim, R. R., Jr. (2000), Drought indices: A review, in Drought: A Global
Assessment, Hazards Disasters Ser., vol. I, edited by D. A. Wilhite,
pp. 159–167, Routledge, New York.

Hidalgo, H. G., T. C. Piechota, and J. A. Dracup (2000), Alternative prin-
cipal components regression procedures for dendrohydrologic recon-
structions, Water Resour. Res., 36, 3241–3249.

Keyantash, J. A. (2001), Formulation of a multivariate drought index, with
analysis for hydroclimatic regions of California, Ph.D. dissertation,
244 pp., Univ. of California, Los Angeles.

Table C1. Vector Formulae for the ADI

Vector Dimension Magnitude

ADI Formula Incorporating Vector
(Equation Numbers Given in Parentheses)

Baseline a = Update anew =

e1 p 1 Xe1
s (4) Xnewe1

s (5)
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Figure 1. Surface water balance as described by the aggregate drought index (ADI). Precipitation P and
snow water content s contribute to streamflow Q, some of which is captured as reservoir storage
V. Evapotranspiration E stems from surficial evaporation and vegetative transpiration, both of which
diminish the surface soil water content W.
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